
Distributed Applications – Session 2

Lecturer Mouhsen Ibrahim

2

Contents

● Client-Server Applications
● Sockets
● Stream Sockets
● Server Sockets
● Client Sockets
● Sockets Input/Output
● Example Program
● Exercise

3

Client-Server Applications

● Clients request services from Servers, which run on a single
server.
● In Distributed Applications there are more than one server which
appear to the clients as a single server (transparent).
● These application implement a protocol standard defined in an
RFC.
● RFC 2161 for Hypertext Transfer-Protocol.
● RFC 5321 for Simple Mail Transfer Protocol.
● These protocols have well known port numbers defined by IANA.

4

Sockets

● A socket is a pair of IP address and port.
● A connection is a pair of two sockets.
● A socket can be either:
 Active Sockets: It is created at the client and starts the connection with
another socket.
 Passive Sockets: It is created at the server and listens on an IP address
and port to accept connections from active sockets.
● Two types of sockets according to Transport Layer Protocol
➢ Stream Sockets which use TCP and are reliable.
➢ Datagram Sockets which use UDP and are not reliable.

5

Stream Sockets

● These sockets use TCP protocol for communication.
● At the server side there is the welcoming socket and connection
socket.
● At the client side there is the client socket.
● In java we use java.net.* packages for socket programming.
(Check the documentation for this package on devdocs.io for
more information).
● The Socket class is used to create Active Sockets.
● The ServerSocket class is used to create Passive Sockets.

6

Stream Sockets

7

Server Sockets

● These sockets are created using the ServerSocket class.
● ServerSocket server = new ServerSocket(int port);
● Create a Server Socket that listens on a port.
● You can specify backlog (the number of connection requests in
the wait queue) and the local address used to bind to it.
● ServerSocket server = new ServerSocket(int port, int backlog,
InetAddress bindAddr);

8

Server Sockets

● ServerSocket methods include
● Socket accept() to accept a client connection and return a new
Socket to communicate with the client.
● void close() to close the connection.
● InetAddress getInetAddress() to get the client’s address.
● Int getLocalPort() to get the local port which the server is
listening on it.

9

Client Sockets

● These sockets are created using the Socket class and they start
a connection with a server socket.
● Socket client = new Socket(<hostname>, <port number>);
● hostname is the IP address or name of the host where the
server is running.
● Port number is the port which the server is listening on it.
● We could use InetAddress class to specify the server address.
● We can also specify the IP address and port number to use at
the client to initiate the connection.

10

Client Sockets

● Once the constructor is called the socket attempts to connect to
the host and port number specified in it.
● If any errors happen an IOException is thrown.
● Socket methods
● void close() to close the connection
● InetAddress getInetAddress() to get remote address.
● InetAddress getLocalAddress() to get local address.
● InputStream getInputStream() to read from the socket.
● OutputStream getOutputStream() to write to the socket.

11

Sockets Input/Output

● We use InputStream to read data from sockets.
● The method getInputStream() is used to return the socket’s input stream
object.
● We can use the read method to read data from it to a byte array.
● int read(byte[] b)
● We use OutputStream to write data to sockets.
● The method getOutputStream() is used to return the socket’s output stream
object.
● We can use the write method to write data to it from a byte array.
● int write(byte[] b)

12

Example Program

● Write a TCP Server program that reads a word from the client,
capitalize its letters and then return the result to the client.
● Write a TCP Client program that writes a word to the server and
then reads the response back from it and display it on the
screen.
● Use threads to do the processing at the server side.
● The Source code for these two programs can be found along
with the lecture’s file.

13

Exercise

● Write a TCP program that reads your a word from the client,
then adds “hello” to the word and send the response back to the
client, and waits for “bye server” from client to close
connection.
● Write a TCP client that writes a word to the server, reads the
response from the server and display it to the screen then sends
“bye server” to the server.
● Using threads is optional.

14

Good Luck

	session 2
	Contents
	Client-Server Applications
	Sockets
	Stream Sockets
	Stream Socket - cont
	Server Sockets
	Server Sockets - cont
	Client Sockets
	Client Sockets - cont
	Sockets IO
	Example Program
	Exercise
	Good Luck

