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Java Packages

● A package is a set of classes, interfaces and types contained in a 
folder.
● Packages provide access protection and namespace 
management.
● Classes with similar functionality are grouped in a single 
package.
● java.net for network operations, java.io for IO operations.
● java.lang fundamental classes.
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Java Interfaces

● An interface describes the behavior of a class.
● Interfaces are implemented by classes.
● Interfaces contain method declarations, static and final 
attributes but not instance attributes.
● A non-abstract class which implements an interface nust 
implement all the methods of the interface.
● An interface cannot be instantiated.
● An interface can extend multiple interfaces.
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Remote Procedure Call (RPC)

● RPC is a protocol that allows one program on one computer to 
request a service from a program running on another computer.
● It uses the client/server model for communication.
● RFC 5531 documents the protocol, it can be found here 
https://tools.ietf.org/html/rfc5531 
● There are many diferent implementations for RPC
● Open Sofware Foundation’s Distributed Computing 
Environment DCE.
● Java Remote Method Invocation RMI.

https://tools.ietf.org/html/rfc5531


6

Remote Method Invocation (RMI)

● It is a mechanism to allow one object in a system (JVM) to 
access another object in another system (JVM).
● It can be used to build distributed applications and provides 
remote communication between java programs.
● In RMI we create a server program which creates remote objects 
and make them available to the client via registry
● The client program accesses remote objects on the server and 
call their methods.
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RMI Application Structure
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RMI Application Structure

● Transport Layer: Connects client and server, manages existing 
connections and sets up new connections.
● Stub: It resides at the client program and acts as a proxy for 
accessing remote objects.
● Skeleton: It resides at the server side, the stub communicates 
with it to access remote objects.
● RRL (Remote Reference Layer): It is the layer that manages the 
references made by the client to remote objects.
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Working of an RMI Application

● When the client calls a method on a remote object, it is passed 
to the stub at the client which sends it to RRL at client side.
● The RRL at client side receives the request and calls invoke() 
method of object remoteRef. It passes the request to RRL on 
server side.
● The RRL on server side receives the request and passes it to the 
skeleton which finally calls the required method on the server.
● The result is passed back all the way to client.
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Marshaling and unmarshaling

● Marshaling is the process of sending parameters to remote 
methods, in case of primitive data types they are included in the 
message and a header is attached and in case of objects they are 
serialized.
● Unmarshaling is the the reverse process at the server side.
● RMI Registry is a namespace on the server for all remote objects.
● The server creates a remote object using bind() method and gives 
it a unique name.
● The client gets a reference for the remote object using lookup() 
method.
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RMI registry
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Java Object Serialization

● An object can be serialized and stored on disk using Java’s 
ObjectOutputStream.
● The class of the object must implement the java.io.Serializable 
interface to be serialized.
● Use the writeObject() method to write an object to the stream.
● An object can be deserialized from a file stored on disk using 
Java’s ObjectInputStream.
● Use the readObject() method to read an object from the stream.
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Serialization Example

● Write a program to serialize an Object of the Client class 
defined in the previous lecture for chat application and save it to 
a file.
● Write a program to deserialize the previous object from the file 
on disk.
● Write a program to serialize and deserialize an array of Client 
objects.
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GOOD LUCK
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