
Distributed Applications – session 5

Lecturer
Mouhsen Ibrahim



2

Contents

● Java Packages and Interfaces 
●Remote Procedure Call (RPC)
● Remote Method Invocation (RMI)
● RMI Application Structure
● Working of an RMI Application
● Marshaling, unmarshaling and RMI registry
● RMI registry



3

Java Packages

● A package is a set of classes, interfaces and types contained in a 
folder.
● Packages provide access protection and namespace 
management.
● Classes with similar functionality are grouped in a single 
package.
● java.net for network operations, java.io for IO operations.
● java.lang fundamental classes.



4

Java Interfaces

● An interface describes the behavior of a class.
● Interfaces are implemented by classes.
● Interfaces contain method declarations, static and final 
attributes but not instance attributes.
● A non-abstract class which implements an interface nust 
implement all the methods of the interface.
● An interface cannot be instantiated.
● An interface can extend multiple interfaces.



5

Remote Procedure Call (RPC)

● RPC is a protocol that allows one program on one computer to 
request a service from a program running on another computer.
● It uses the client/server model for communication.
● RFC 5531 documents the protocol, it can be found here 
https://tools.ietf.org/html/rfc5531 
● There are many diferent implementations for RPC
● Open Sofware Foundation’s Distributed Computing 
Environment DCE.
● Java Remote Method Invocation RMI.

https://tools.ietf.org/html/rfc5531


6

Remote Method Invocation (RMI)

● It is a mechanism to allow one object in a system (JVM) to 
access another object in another system (JVM).
● It can be used to build distributed applications and provides 
remote communication between java programs.
● In RMI we create a server program which creates remote objects 
and make them available to the client via registry
● The client program accesses remote objects on the server and 
call their methods.



7

RMI Application Structure



8

RMI Application Structure

● Transport Layer: Connects client and server, manages existing 
connections and sets up new connections.
● Stub: It resides at the client program and acts as a proxy for 
accessing remote objects.
● Skeleton: It resides at the server side, the stub communicates 
with it to access remote objects.
● RRL (Remote Reference Layer): It is the layer that manages the 
references made by the client to remote objects.



9

Working of an RMI Application

● When the client calls a method on a remote object, it is passed 
to the stub at the client which sends it to RRL at client side.
● The RRL at client side receives the request and calls invoke() 
method of object remoteRef. It passes the request to RRL on 
server side.
● The RRL on server side receives the request and passes it to the 
skeleton which finally calls the required method on the server.
● The result is passed back all the way to client.



10

Marshaling and unmarshaling

● Marshaling is the process of sending parameters to remote 
methods, in case of primitive data types they are included in the 
message and a header is attached and in case of objects they are 
serialized.
● Unmarshaling is the the reverse process at the server side.
● RMI Registry is a namespace on the server for all remote objects.
● The server creates a remote object using bind() method and gives 
it a unique name.
● The client gets a reference for the remote object using lookup() 
method.



11

RMI registry



12

Java Object Serialization

● An object can be serialized and stored on disk using Java’s 
ObjectOutputStream.
● The class of the object must implement the java.io.Serializable 
interface to be serialized.
● Use the writeObject() method to write an object to the stream.
● An object can be deserialized from a file stored on disk using 
Java’s ObjectInputStream.
● Use the readObject() method to read an object from the stream.



13

Serialization Example

● Write a program to serialize an Object of the Client class 
defined in the previous lecture for chat application and save it to 
a file.
● Write a program to deserialize the previous object from the file 
on disk.
● Write a program to serialize and deserialize an array of Client 
objects.



14

GOOD LUCK


	session5
	Contents
	Java Packages
	Java Interfaces
	RPC
	RMI
	RMI APplication Structure
	RMI Application Structure
	RMI Aplication
	Marshaling and unmarshaling
	RMI Registry
	Java Object Serialization
	Serialization Example
	GOOD LUCK

