
Distributed Applications – Session 1

Lecturer Mouhsen Ibrahim



2

Contents

● Introduction
● Tools
● Threads
● Java Threads
● Controlling Java Threads
● Java Threads states
● Exercise



3

Introduction

● A distributed application is an application that runs on multiple 
nodes to run a single task or job.
● Distributed Applications should be Highly Available, Fault 
tolerant and Scalable.
● Highly Available means that the application should be always 
up and running to serve clients, availability can be measured as 
percent of time when the application is UP vs when the 
application is DOWN.
● Fault tolerant means that the failure of one node should not 
afect the application and it should continue to serve clients.



4

Introduction

● Scalability: It means that the application can serve a sudden 
increase in workload without afecting performance and 
availability.
● Elastic: It means that the application’s infrastructure can 
expand or shrink based on workload needs.
● Distributed applications can be created almost as normal 
applications the only diference is how we deploy them to 
achieve the previous characteristics.



5

Tools

● In this course we will use Java JDK 8 and eclipse for writing and 
running distributed applications.
● Eclipse can be downloaded from here
● http://www.eclipse.org/downloads/eclipse-packages
● JDK 8 can be downloaded from here
● 
http://www.oracle.com/technetwork/java/javase/downloads/jdk
8-downloads-2133151.html

http://www.eclipse.org/downloads/eclipse-packages
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html


6

Threads

● A thread is currently the smallest unit of execution, it is part 
of a process and shares the process’s code and global variables.
● Multiple threads can be created in a single process to do 
diferent tasks.
● Advantages:
➔ Can improve performance and use multiple processing units if 
available.
➔ Threads can share resources together.



7

Threads

● Disadvantages
➔ Threads can lead to deadlocks.
➔ Overhead of switching between threads.



8

Java Threads

● Threads in Java can be created using two methods
➢ Extending the Thread class
✔ It must implement the run() method.
✔ The thread ends when run() returns.
✔ Call start() method to get the thread ready for running.
● Check thread_example1.java for a complete example of a 
program that uses threads.



9

Java Threads

➢ Implements the Runnable interface.
✔ Implement the run() method.
✔ Use the Runnable object as an argument to the Thread class.
● Using Runnable allows you to extend other classes as well, 
because in Java you can only extend from one class.
● Check thread_example2.java for an example of using this 
method to create threads.



10

Controlling Java Threads

● start() method to mark thread as ready for execution.
● join() wait for a thread to finish.
● wait(), notify(), notifyAll() are used for synchronization.
● setPriority() 0 to 10 (MIN_PRIORITY to MAX_PRIORITY) 5 is 
default NORMAL_PRIORITY.
● yield() causes current thread to stop running to allow other 
threads to run.
● sleep(msec) stop execution for some time



11

Java Thread States



12

Exercise

● Write a single java class that extends the Thread class to print 
numbers from num1 to num2.
● Use this class in a main program to print numbers from 1 to 10 
and numbers from 10 to 20.



13

Good Luck


	Lecture 1
	Contents
	Introduction
	Introduction - cont
	Tools
	Threads
	Threads - cont
	Create threads - method 1
	Create threads - method 2
	Controlling Java Threads
	Java Thread States
	Exercise
	Good Luck

